Biological invasions represent one of the main drivers of biodiversity loss with adverse impacts on human societies, economies and public health. More than 500 ant species have been transported outside their native range with the help of humans, while the majority of them have managed to establish viable populations in the wild. Nevertheless, data from the Mediterranean region suggest that most alien ants occupy anthropogenic habitats with little spread in semi-natural and natural habitats. Research on biological invasions of ants in Greece had previously identified a total of 15 alien ant species. In this article, an extensive literature investigation and material examination provide a revised checklist of the alien myrmecofauna of Greece. Although the number of alien ant species remains the same, the checklist’s composition is largely altered to provide an up-to-date overview of the country’s alien myrmecofauna in order to enhance management decisions and future research. The presence and distribution of alien ants within Greek administrative divisions, NATURA 2000 sites and Corine Land Cover types are analysed and presented. In particular, the species richness of alien ants seems to be highest in the Aegean Archipelago (Crete and Southern Aegean Islands) probably due to uneven collecting efforts and increased climatic suitability. Alien ant species are mostly associated with anthropogenic habitats including urban and agricultural areas, although a significant percentage has managed to spread into forest and semi-natural areas, including protected NATURA 2000 sites. Future research directions enhancing the monitoring of alien ants and their impacts are indicated to safeguard native ant biodiversity and conservation efforts of rare and endemic taxa.
Recent related articles in this category
- New records of introduced species in the Mediterranean (February 2025)
- On the influence of plant morphology in the extensive green roof cover: A case study in Mediterranean area
- Large-scale loss of Mediterranean coastal marshes under rising sea levels by 2100
- Potential risk of macro-plastic on the megafauna of two semi-enclosed European seas
- Small-scale land use effects on plant communities in Mediterranean urban ecosystems